服务 - 北京宏剑官网 北京宏剑公司成立于1996年,属北京市高新技术企业,主要经营各种分子模拟软件,产品涉及量化、材料及生物药物软件。经过十六年的发展历程,已经与国内外100余家软件供应商签署了中国包括港台地区总代理协议,共代理产品400多种。国内用户包括500多所大学及科研单位、3000个科研小组及超过50个高性能计算中心项目。 http://www.hongcam.com.cn/index.php/service/54-products/materials 2024-05-17T07:29:42+00:00 Joomla! - Open Source Content Management 产品-ONETEP 2013-02-27T18:57:59+00:00 2013-02-27T18:57:59+00:00 http://www.hongcam.com.cn/index.php/product/materials/onetep hongcam hong@hongcam.com.cn <h1><span style="color: #800000;"><strong>ONETEP</strong></span></h1> <p><span style="color: #000000;"><strong>最新版本: 无版本号</strong></span><br />ONETEP是针对于大体系计算的具有革命性的基于量子力学的程序。ONETEP在密度矩阵公式中使用密度泛函理论(DFT)。在ONETEP中,密度矩阵是根据特殊的最大局域泛函和非正交的广义万尼尔函数得到的。ONETEP是一个线性标度的方法,所以随着体系原子数目的增加,计算总能的时间是线性增加的。使用ONETEP进行第一性原理量化计算的典型应用有表面化学,结构性质,大分子体系的构象研究以及碳纳米管的结构和能量计算。同样也可以研究半导体和陶瓷材料中缺陷的相关性质(空位,空隙,掺杂,晶界和位错)。</p> <p>&nbsp;</p> <p><img src="images/Hongcam_images/ONETEP_images/onetep.png" width="509" height="357" alt="onetep" style="display: block; margin-left: auto; margin-right: auto;" /></p> <p>&nbsp;</p> <p style="text-align: center;">使用ONETEP程序中NGWF方法优化不同体系的能量收敛情况,括号中的数字表示体系中的原子数。</p> <h1><span style="color: #800000;"><strong>ONETEP</strong></span></h1> <p><span style="color: #000000;"><strong>最新版本: 无版本号</strong></span><br />ONETEP是针对于大体系计算的具有革命性的基于量子力学的程序。ONETEP在密度矩阵公式中使用密度泛函理论(DFT)。在ONETEP中,密度矩阵是根据特殊的最大局域泛函和非正交的广义万尼尔函数得到的。ONETEP是一个线性标度的方法,所以随着体系原子数目的增加,计算总能的时间是线性增加的。使用ONETEP进行第一性原理量化计算的典型应用有表面化学,结构性质,大分子体系的构象研究以及碳纳米管的结构和能量计算。同样也可以研究半导体和陶瓷材料中缺陷的相关性质(空位,空隙,掺杂,晶界和位错)。</p> <p>&nbsp;</p> <p><img src="images/Hongcam_images/ONETEP_images/onetep.png" width="509" height="357" alt="onetep" style="display: block; margin-left: auto; margin-right: auto;" /></p> <p>&nbsp;</p> <p style="text-align: center;">使用ONETEP程序中NGWF方法优化不同体系的能量收敛情况,括号中的数字表示体系中的原子数。</p> 产品-FPLO 2013-02-27T18:46:01+00:00 2013-02-27T18:46:01+00:00 http://www.hongcam.com.cn/index.php/product/materials/fplo hongcam hong@hongcam.com.cn <h1><span style="color: #800000;"><strong>FPLO</strong></span></h1> <p><strong>最新版本: 9.0</strong><br />FPLO是完全势局域轨道最小基代码,用局域自旋密度近似(LSDA)求解规则格子的Kohn-Sham方程。可以进行四分量相对论求解,以及进行LSDA+U计算。虽然程序的基组小了一个数量级,但是可以获得与完全势LAPW接近的数值精度。特别是计算的总能量绝对值与WIEN 97的符合程度在1 mHartree以内。由于FPLO使用了最小基,因此它可以对包含一百个过渡金属原子的晶胞进行高精度的完全势计算。FPLO包含图形界面的输入文件编辑器,3D结构工具和结果显示工具。</p> <p><br /><strong>FPLO-9的新功能:</strong><br />1. 执行更快(最高达一个数量级),特别是对大晶胞和重元素<br />2. GGA加入PBE<br />3. LDA/GGA、LSDA+U/GGA+U实现了用力来优化内部参数(Wyckoff位置)<br />4. 在后期处理中可以使用Wannier函数<br />5. 有限尺寸核模型<br />6. 输出格点的密度、自旋密度和势,用于显示</p> <h1><span style="color: #800000;"><strong>FPLO</strong></span></h1> <p><strong>最新版本: 9.0</strong><br />FPLO是完全势局域轨道最小基代码,用局域自旋密度近似(LSDA)求解规则格子的Kohn-Sham方程。可以进行四分量相对论求解,以及进行LSDA+U计算。虽然程序的基组小了一个数量级,但是可以获得与完全势LAPW接近的数值精度。特别是计算的总能量绝对值与WIEN 97的符合程度在1 mHartree以内。由于FPLO使用了最小基,因此它可以对包含一百个过渡金属原子的晶胞进行高精度的完全势计算。FPLO包含图形界面的输入文件编辑器,3D结构工具和结果显示工具。</p> <p><br /><strong>FPLO-9的新功能:</strong><br />1. 执行更快(最高达一个数量级),特别是对大晶胞和重元素<br />2. GGA加入PBE<br />3. LDA/GGA、LSDA+U/GGA+U实现了用力来优化内部参数(Wyckoff位置)<br />4. 在后期处理中可以使用Wannier函数<br />5. 有限尺寸核模型<br />6. 输出格点的密度、自旋密度和势,用于显示</p> 产品-Diamond 2013-02-27T18:30:03+00:00 2013-02-27T18:30:03+00:00 http://www.hongcam.com.cn/index.php/product/materials/diamond hongcam hong@hongcam.com.cn <h1><span style="color: #800000;"><strong>Diamond -- 晶体结构数据可视化分析软件</strong></span></h1> <p><strong>最新版本: 4.5.2</strong><br />Diamond是杰出的分子和晶体结构数据可视化分析软件。它整合了丰富的功能,可以用于含有晶体结构数据的工作,适用于教育,科研以及出版。Diamond像其它的软件一样不仅可以画出精密的分子和晶体结构图片,它还有一系列拓展的功能,它可以让你很容易的从一套基本结构参数(晶胞,空间群和原子的位置)中模拟任意部分的晶体结构。</p> <p><br /><strong>更新功能:</strong></p> <p><strong>&nbsp;</strong></p> <p><strong><img src="images/Hongcam_images/Diamond_images/diamond.jpg" width="1024" height="742" alt="diamond" style="display: block; margin-left: auto; margin-right: auto;" /></strong></p> <h1><span style="color: #800000;"><strong>Diamond -- 晶体结构数据可视化分析软件</strong></span></h1> <p><strong>最新版本: 4.5.2</strong><br />Diamond是杰出的分子和晶体结构数据可视化分析软件。它整合了丰富的功能,可以用于含有晶体结构数据的工作,适用于教育,科研以及出版。Diamond像其它的软件一样不仅可以画出精密的分子和晶体结构图片,它还有一系列拓展的功能,它可以让你很容易的从一套基本结构参数(晶胞,空间群和原子的位置)中模拟任意部分的晶体结构。</p> <p><br /><strong>更新功能:</strong></p> <p><strong>&nbsp;</strong></p> <p><strong><img src="images/Hongcam_images/Diamond_images/diamond.jpg" width="1024" height="742" alt="diamond" style="display: block; margin-left: auto; margin-right: auto;" /></strong></p> 产品-USPEX 2012-09-11T19:19:23+00:00 2012-09-11T19:19:23+00:00 http://www.hongcam.com.cn/index.php/product/materials/uspex hongcam hong@hongcam.com.cn <h2><strong><span style="color: #800000;">USPEX—新材料和矿物相晶体结构预测软件</span></strong></h2> <p>&nbsp; &nbsp; &nbsp; 对在高温、高压等极端环境中材料结构的变化,以及发现材料新的物相是目前材料学研究领域的热点和难点。USPEX对这一难点问题取得了突破性的进展。USPEX是Universal Structure Predictor: Evolutionary Xtallography的缩写,由Artem R. Oganov研究小组开发的一种计算方法和同名软件实现。她克服了使用传统方法中遇到的成功率低和计算成本高的缺点,成功地实现了对于任意给定温度、压强条件下, 无需实验数据等经验参数,仅从材料化学成分组成进行晶体结构预测的功能。“uspekh” 在俄语中是“成功”的意思,也显示了这种方法近100%的成功率!</p> <p>&nbsp;</p> <hr /> <p><strong><span style="color: #800000;">特色功能</span></strong><br /><span style="color: #ff9900;">◆</span>无需实验数据,仅从材料的化学成分出发预测晶体结构,特别适用于高温、高压等极限条件下的晶体结构和分子结构预测。<br />&nbsp; &nbsp; &nbsp;<span style="color: #ff9900;">◆</span>功能性材料,如超硬、超密材料,高/低k介电材料等<br />&nbsp; &nbsp; &nbsp;<span style="color: #ff9900;">◆</span>新能源材料,如储氢材料等<br />&nbsp; &nbsp; &nbsp;<span style="color: #ff9900;">◆</span>金属,超导体,金属有机物等材料<br /><span style="color: #ff9900;">◆</span>支持各种晶胞结构的搜索。<br />&nbsp; &nbsp; &nbsp;<span style="color: #ff9900;">◆</span>由实验得到的晶胞结构开始搜索,如晶胞参数,晶胞形状,晶胞体积等<br />&nbsp; &nbsp; &nbsp;<span style="color: #ff9900;">◆</span>由已知和假设结构开始搜索<br /><span style="color: #ff9900;">◆</span>高效的收敛技术。<br />&nbsp; &nbsp; &nbsp;<span style="color: #ff9900;">◆</span>遗传进化算法(Evolutionary Algorithm)显著地降低对非物理和冗余结构的搜索<br />&nbsp; &nbsp; &nbsp;<span style="color: #ff9900;">◆</span>微粒群优化算法(Particle Swarm Optimization)对周期性晶体结构预测</p> <p>&nbsp;<img src="images/Hongcam_images/uspex_images/USPEX01.jpg" width="486" height="237" alt="USPEX01" style="display: block; margin-left: auto; margin-right: auto;" /></p> <p>&nbsp;</p> <p>&nbsp; &nbsp; &nbsp; &nbsp;40个原子的MgSiO3超晶胞的结构搜索。左图:结构局域优化随机搜索;右图:USPEX进化搜索。随机搜索120’000步后仍未收敛,而USPEX在1’000余步即达到稳定结构。正是因为引入了进化算法中对“优质”结构的筛选和继承,使得模拟过程快速地向低能方向收敛,同时也保留了较高能量的结构,有助于对高能区结构的探索。</p> <p><span style="color: #ff9900;">◆</span>支持分子结构的全部固定、部分固定、和完全可变的各种操作</p> <p><span style="color: #ff9900;">◆</span>使用“指纹识别”技术来确定结构的相似程度<br /><span style="color: #ff9900;">◆</span>支持断点续算(可修改参数)<br /><span style="color: #ff9900;">◆</span>具备与强大的可视化和分析工具STM4软件的接口</p> <p>&nbsp;</p> <p><img src="images/Hongcam_images/uspex_images/USPEX03.jpg" width="534" height="314" alt="USPEX03" style="display: block; margin-left: auto; margin-right: auto;" /></p> <p><span style="color: #800000;"><strong>优势</strong></span><br />&nbsp; &nbsp; &nbsp; USPEX通过数片结构的空间粘连,部分保留并考虑了原子的局域排布信息。反映了晶体中强的短程相互作用和当前一代的信息。对于处理较大的体系具有明显优势。置换算法提供了用户自定义哪种原子相互交换的功能,特别适用于具有长程化学相似的不同种原子构成的体系。<br />&nbsp; &nbsp; &nbsp; 对于没有任何晶体信息或者仅有晶格参数的情况下,可以完全使用从头算处理6~40原子/晶胞的体系。对于多于40原子/晶胞的体系,计算成本显著增大,但仍可以实现,需要借助USPEX中的其他方法或近似,足以处理大多数的晶体学和地球物理学问题。对于100~200原子/晶胞的体系,使用经典力场方法,也可以得到很好的结果。</p> <p><br /><span style="color: #800000;"><strong>源代码授权</strong></span><br />&nbsp; &nbsp; &nbsp; USPEX是由 Andriy O. Lyakhov, Colin W. Glass 和 Qiang Zhu 共同编写的matlab语言的软件包。对于大学和研究所中的个人研究者,USPEX 是开源代码(须注册)。对于企业用户,USPEX 是商业软件。北京宏剑公司是USPEX中国区合作伙伴,向国内用户提供USPEX源代码和技术支持。</p> <p>&nbsp;</p> <h2><strong><span style="color: #800000;">USPEX—新材料和矿物相晶体结构预测软件</span></strong></h2> <p>&nbsp; &nbsp; &nbsp; 对在高温、高压等极端环境中材料结构的变化,以及发现材料新的物相是目前材料学研究领域的热点和难点。USPEX对这一难点问题取得了突破性的进展。USPEX是Universal Structure Predictor: Evolutionary Xtallography的缩写,由Artem R. Oganov研究小组开发的一种计算方法和同名软件实现。她克服了使用传统方法中遇到的成功率低和计算成本高的缺点,成功地实现了对于任意给定温度、压强条件下, 无需实验数据等经验参数,仅从材料化学成分组成进行晶体结构预测的功能。“uspekh” 在俄语中是“成功”的意思,也显示了这种方法近100%的成功率!</p> <p>&nbsp;</p> <hr /> <p><strong><span style="color: #800000;">特色功能</span></strong><br /><span style="color: #ff9900;">◆</span>无需实验数据,仅从材料的化学成分出发预测晶体结构,特别适用于高温、高压等极限条件下的晶体结构和分子结构预测。<br />&nbsp; &nbsp; &nbsp;<span style="color: #ff9900;">◆</span>功能性材料,如超硬、超密材料,高/低k介电材料等<br />&nbsp; &nbsp; &nbsp;<span style="color: #ff9900;">◆</span>新能源材料,如储氢材料等<br />&nbsp; &nbsp; &nbsp;<span style="color: #ff9900;">◆</span>金属,超导体,金属有机物等材料<br /><span style="color: #ff9900;">◆</span>支持各种晶胞结构的搜索。<br />&nbsp; &nbsp; &nbsp;<span style="color: #ff9900;">◆</span>由实验得到的晶胞结构开始搜索,如晶胞参数,晶胞形状,晶胞体积等<br />&nbsp; &nbsp; &nbsp;<span style="color: #ff9900;">◆</span>由已知和假设结构开始搜索<br /><span style="color: #ff9900;">◆</span>高效的收敛技术。<br />&nbsp; &nbsp; &nbsp;<span style="color: #ff9900;">◆</span>遗传进化算法(Evolutionary Algorithm)显著地降低对非物理和冗余结构的搜索<br />&nbsp; &nbsp; &nbsp;<span style="color: #ff9900;">◆</span>微粒群优化算法(Particle Swarm Optimization)对周期性晶体结构预测</p> <p>&nbsp;<img src="images/Hongcam_images/uspex_images/USPEX01.jpg" width="486" height="237" alt="USPEX01" style="display: block; margin-left: auto; margin-right: auto;" /></p> <p>&nbsp;</p> <p>&nbsp; &nbsp; &nbsp; &nbsp;40个原子的MgSiO3超晶胞的结构搜索。左图:结构局域优化随机搜索;右图:USPEX进化搜索。随机搜索120’000步后仍未收敛,而USPEX在1’000余步即达到稳定结构。正是因为引入了进化算法中对“优质”结构的筛选和继承,使得模拟过程快速地向低能方向收敛,同时也保留了较高能量的结构,有助于对高能区结构的探索。</p> <p><span style="color: #ff9900;">◆</span>支持分子结构的全部固定、部分固定、和完全可变的各种操作</p> <p><span style="color: #ff9900;">◆</span>使用“指纹识别”技术来确定结构的相似程度<br /><span style="color: #ff9900;">◆</span>支持断点续算(可修改参数)<br /><span style="color: #ff9900;">◆</span>具备与强大的可视化和分析工具STM4软件的接口</p> <p>&nbsp;</p> <p><img src="images/Hongcam_images/uspex_images/USPEX03.jpg" width="534" height="314" alt="USPEX03" style="display: block; margin-left: auto; margin-right: auto;" /></p> <p><span style="color: #800000;"><strong>优势</strong></span><br />&nbsp; &nbsp; &nbsp; USPEX通过数片结构的空间粘连,部分保留并考虑了原子的局域排布信息。反映了晶体中强的短程相互作用和当前一代的信息。对于处理较大的体系具有明显优势。置换算法提供了用户自定义哪种原子相互交换的功能,特别适用于具有长程化学相似的不同种原子构成的体系。<br />&nbsp; &nbsp; &nbsp; 对于没有任何晶体信息或者仅有晶格参数的情况下,可以完全使用从头算处理6~40原子/晶胞的体系。对于多于40原子/晶胞的体系,计算成本显著增大,但仍可以实现,需要借助USPEX中的其他方法或近似,足以处理大多数的晶体学和地球物理学问题。对于100~200原子/晶胞的体系,使用经典力场方法,也可以得到很好的结果。</p> <p><br /><span style="color: #800000;"><strong>源代码授权</strong></span><br />&nbsp; &nbsp; &nbsp; USPEX是由 Andriy O. Lyakhov, Colin W. Glass 和 Qiang Zhu 共同编写的matlab语言的软件包。对于大学和研究所中的个人研究者,USPEX 是开源代码(须注册)。对于企业用户,USPEX 是商业软件。北京宏剑公司是USPEX中国区合作伙伴,向国内用户提供USPEX源代码和技术支持。</p> <p>&nbsp;</p> 产品-Wien2k 1970-01-01T00:00:00+00:00 1970-01-01T00:00:00+00:00 http://www.hongcam.com.cn/index.php/product/materials/wien2k <h1><span style="color: #800000; font-family: times new roman,times; font-size: 14pt;"><strong>WIEN2k</strong></span></h1> <p><span style="font-family: times new roman,times; font-size: 10pt;">作为专业的第一原理周期性材料计算引擎,WIEN2k软件包是目前采用密度泛函理论(DFT)计算周期性体系电子结构的最精确的计算程序之一。可以对各类周期性体相和表面材料实现高精度的性质计算和模拟。</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">可视化图形界面:WIEN2k软件包可提供友好的网页终端操作环境(w2web),实现简洁明快的作业生成、修改、递交和管理。</span></p> <h4><br /><span style="font-family: times new roman,times; font-size: 10pt;"><strong><span style="color: #800000;">WIEN2k软件性能</span></strong></span></h4> <p><span style="font-family: times new roman,times; font-size: 10pt;">最精确的全势(Full Potential, FP)方法结合(线性)增广平面波((L)APW-局域轨道(lo)基组和四面体布点方案,完美实现高精度计算</span></p> <ol style="list-style-type: lower-roman;"> <li><span style="font-family: times new roman,times; font-size: 10pt;">可对价层电子可考虑标量相对论效应和旋-轨耦合效应</span></li> <li><span style="font-family: times new roman,times; font-size: 10pt;">对芯层电子,在原子结构层面上考虑了完全相对论的效应</span></li> <li><span style="font-family: times new roman,times; font-size: 10pt;">交换-相关能的计算主要采用局域(自旋)密度近似(L(S)DA)或广义梯度近似(GGA)</span></li> </ol> <p><span style="font-family: times new roman,times; font-size: 10pt;">应用四面体布点方案,保证了对金属和其它导体材料的Fermi面实现精准计算。</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">针对含有d或f电子的重元素体系,WIEN2K程序包可通过LDA/GGA+U方案校正局域电子的自相关作用,得到与实验吻合的计算结果。</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">方便多样的并行计算模式(k点并行、mpi并行和混合并行),大大提高了计算效率。</span></p> <p>&nbsp;</p> <p><span style="font-family: times new roman,times; font-size: 10pt;"><strong style="color: #800000;">计算模块及功能</strong></span></p> <p><span style="font-family: times new roman,times; font-size: 10pt;">内置230个空间群列表,(辅助XCrysDen)可方便地实现输入结构的图形化</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">常规的电子结构自洽迭代(SCF)计算</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">周期性体系的态密度和能带结构计算</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">磁性体系自旋极化计算,精确计算铁磁性和反铁磁性结构计算和设计</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">X射线发射和吸收谱计算</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">简单和复杂体系的结构优化,包括晶胞参数和原子内坐标 (两者尚不能实现同时优化)</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">固体的光学特性和电子能量损失谱计算</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">超晶胞生成模块,模拟界面和表面材料、复杂的掺杂体系</span></p> <p><span style="color: #000000; font-family: times new roman,times; font-size: 10pt;">LDA/GGA+<em>U</em>实现含有稀土元素等重元素材料化合物材料的高精度的性质计算</span></p> <p><span style="font-family: times new roman,times; font-size: 10pt;"><strong>&nbsp;</strong></span></p> <p><span style="color: #800000; font-family: times new roman,times; font-size: 10pt;"><strong>WIEN2k程序包计算周期性体系举例</strong></span></p> <p><span style="color: #800000;"><strong>&nbsp;</strong></span></p> <p style="text-align: center;"><img src="images/Hongcam_images/Win2K_images/WIEN2K07.jpg" alt="WIEN2K07" height="236" width="539" />&nbsp; &nbsp; &nbsp; &nbsp;</p> <p style="text-align: center;"><span style="font-family: times new roman,times; font-size: 8pt;">TiC的电荷密的二维剖面图 [(100)面]和三维等值线图</span></p> <p style="text-align: center;">&nbsp;</p> <p style="text-align: center;"><img src="images/Hongcam_images/Win2K_images/WIEN2K06.jpg" alt="WIEN2K06" height="261" width="316" /></p> <p style="text-align: center;"><span style="font-family: times new roman,times; font-size: 8pt;">周期材料结构TiCd的晶胞参数的优化</span></p> <p style="text-align: center;">&nbsp;</p> <p style="text-align: center;"><img src="images/Hongcam_images/Win2K_images/WIEN2K04.jpg" alt="WIEN2K04" height="223" width="534" /></p> <p style="text-align: center;"><span style="font-family: times new roman,times; font-size: 8pt;">掺杂体系CaxEu1-xB6自旋极化态密度(对Eu的4f电子考虑GGA+<em>U</em>)</span></p> <p style="text-align: center;">&nbsp;</p> <p style="text-align: center;"><img src="images/Hongcam_images/Win2K_images/WIEN2K05.jpg" alt="WIEN2K05" height="347" width="274" /></p> <p style="text-align: center;"><span style="font-family: times new roman,times; font-size: 8pt;">考虑旋-轨耦合后EuTe的能带结构(对Eu的4f电子考虑GGA+U)。</span></p> <p style="text-align: center;"><span style="font-family: times new roman,times; font-size: 8pt;">&lt;-15.0eV区域,考虑旋-轨耦合后Eu的5p1/2与5p3/2轨道显著裂分。</span></p> <p>&nbsp;</p> <p>&nbsp;</p> <p>&nbsp;</p> <h1><span style="color: #800000; font-family: times new roman,times; font-size: 14pt;"><strong>WIEN2k</strong></span></h1> <p><span style="font-family: times new roman,times; font-size: 10pt;">作为专业的第一原理周期性材料计算引擎,WIEN2k软件包是目前采用密度泛函理论(DFT)计算周期性体系电子结构的最精确的计算程序之一。可以对各类周期性体相和表面材料实现高精度的性质计算和模拟。</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">可视化图形界面:WIEN2k软件包可提供友好的网页终端操作环境(w2web),实现简洁明快的作业生成、修改、递交和管理。</span></p> <h4><br /><span style="font-family: times new roman,times; font-size: 10pt;"><strong><span style="color: #800000;">WIEN2k软件性能</span></strong></span></h4> <p><span style="font-family: times new roman,times; font-size: 10pt;">最精确的全势(Full Potential, FP)方法结合(线性)增广平面波((L)APW-局域轨道(lo)基组和四面体布点方案,完美实现高精度计算</span></p> <ol style="list-style-type: lower-roman;"> <li><span style="font-family: times new roman,times; font-size: 10pt;">可对价层电子可考虑标量相对论效应和旋-轨耦合效应</span></li> <li><span style="font-family: times new roman,times; font-size: 10pt;">对芯层电子,在原子结构层面上考虑了完全相对论的效应</span></li> <li><span style="font-family: times new roman,times; font-size: 10pt;">交换-相关能的计算主要采用局域(自旋)密度近似(L(S)DA)或广义梯度近似(GGA)</span></li> </ol> <p><span style="font-family: times new roman,times; font-size: 10pt;">应用四面体布点方案,保证了对金属和其它导体材料的Fermi面实现精准计算。</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">针对含有d或f电子的重元素体系,WIEN2K程序包可通过LDA/GGA+U方案校正局域电子的自相关作用,得到与实验吻合的计算结果。</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">方便多样的并行计算模式(k点并行、mpi并行和混合并行),大大提高了计算效率。</span></p> <p>&nbsp;</p> <p><span style="font-family: times new roman,times; font-size: 10pt;"><strong style="color: #800000;">计算模块及功能</strong></span></p> <p><span style="font-family: times new roman,times; font-size: 10pt;">内置230个空间群列表,(辅助XCrysDen)可方便地实现输入结构的图形化</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">常规的电子结构自洽迭代(SCF)计算</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">周期性体系的态密度和能带结构计算</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">磁性体系自旋极化计算,精确计算铁磁性和反铁磁性结构计算和设计</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">X射线发射和吸收谱计算</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">简单和复杂体系的结构优化,包括晶胞参数和原子内坐标 (两者尚不能实现同时优化)</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">固体的光学特性和电子能量损失谱计算</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">超晶胞生成模块,模拟界面和表面材料、复杂的掺杂体系</span></p> <p><span style="color: #000000; font-family: times new roman,times; font-size: 10pt;">LDA/GGA+<em>U</em>实现含有稀土元素等重元素材料化合物材料的高精度的性质计算</span></p> <p><span style="font-family: times new roman,times; font-size: 10pt;"><strong>&nbsp;</strong></span></p> <p><span style="color: #800000; font-family: times new roman,times; font-size: 10pt;"><strong>WIEN2k程序包计算周期性体系举例</strong></span></p> <p><span style="color: #800000;"><strong>&nbsp;</strong></span></p> <p style="text-align: center;"><img src="images/Hongcam_images/Win2K_images/WIEN2K07.jpg" alt="WIEN2K07" height="236" width="539" />&nbsp; &nbsp; &nbsp; &nbsp;</p> <p style="text-align: center;"><span style="font-family: times new roman,times; font-size: 8pt;">TiC的电荷密的二维剖面图 [(100)面]和三维等值线图</span></p> <p style="text-align: center;">&nbsp;</p> <p style="text-align: center;"><img src="images/Hongcam_images/Win2K_images/WIEN2K06.jpg" alt="WIEN2K06" height="261" width="316" /></p> <p style="text-align: center;"><span style="font-family: times new roman,times; font-size: 8pt;">周期材料结构TiCd的晶胞参数的优化</span></p> <p style="text-align: center;">&nbsp;</p> <p style="text-align: center;"><img src="images/Hongcam_images/Win2K_images/WIEN2K04.jpg" alt="WIEN2K04" height="223" width="534" /></p> <p style="text-align: center;"><span style="font-family: times new roman,times; font-size: 8pt;">掺杂体系CaxEu1-xB6自旋极化态密度(对Eu的4f电子考虑GGA+<em>U</em>)</span></p> <p style="text-align: center;">&nbsp;</p> <p style="text-align: center;"><img src="images/Hongcam_images/Win2K_images/WIEN2K05.jpg" alt="WIEN2K05" height="347" width="274" /></p> <p style="text-align: center;"><span style="font-family: times new roman,times; font-size: 8pt;">考虑旋-轨耦合后EuTe的能带结构(对Eu的4f电子考虑GGA+U)。</span></p> <p style="text-align: center;"><span style="font-family: times new roman,times; font-size: 8pt;">&lt;-15.0eV区域,考虑旋-轨耦合后Eu的5p1/2与5p3/2轨道显著裂分。</span></p> <p>&nbsp;</p> <p>&nbsp;</p> <p>&nbsp;</p> 产品-VASP 北京宏剑公司提供代购和培训安装服务 1970-01-01T00:00:00+00:00 1970-01-01T00:00:00+00:00 http://www.hongcam.com.cn/index.php/product/materials/vasp hongcam hong@hongcam.com.cn <p><span style="font-family: times new roman,times; font-size: 14pt;"><strong><span style="color: #800000;">VASP&nbsp;&nbsp;&nbsp; 北京宏剑公司提供代购和培训安装服务</span></strong></span></p> <p><span style="font-size: 12pt; font-family: times new roman,times;"><strong><a href="http://www.goscience.cn/"><span style="color: #800000;">更多vasp<strong style="font-family: 'times new roman', times; font-size: 16px;"><span style="color: #800000;">视频</span></strong>培训教程请在直答理工网查阅<strong style="font-family: 'times new roman', times; font-size: 16px;"><span style="color: #800000;"></span></strong></span></a><strong style="font-family: 'times new roman', times; font-size: 16px;"><a href="http://www.goscience.cn/"><span style="color: #800000;"></span></a></strong></strong></span><strong><span style="color: #800000;">(<a href="http://www.goscience.cn/"><span style="color: #800000;">http://www.goscience.cn/</span></a>)</span><span style="color: #800000;"><a href="http://www.goscience.cn/"><span style="color: #800000;"></span></a></span></strong><span style="font-size: 0.8em;"><br /></span></p> <p><span style="font-size: 12pt; font-family: times new roman,times;"><strong><span style="color: #800000;">&nbsp;</span></strong></span></p> <p><span style="color: #800000;"><span style="font-family: 'times new roman', times; color: #0000ff;"><strong>独家采用成本分块报价,实现利润,税金,成本透明清晰,让你知道和接受的利润金额。</strong></span><span style="font-family: 'times new roman', times;"><strong><span style="color: #0000ff;">来信索取"VASP成本透明报价单”</span>,<span><span style="color: #800000;">sales@hongcam.com.cn</span></span></strong></span></span><strong style="font-family: 'times new roman', times; font-size: 12pt;">&nbsp;</strong></p> <p><strong style="font-family: 'times new roman', times; font-size: 12pt;">&nbsp;</strong></p> <p style="font-size: 12.8px;"><span style="color: #0000ff;"><strong><span style="font-size: 12pt;"><span style="font-family: 'times new roman', times;">&lt;&lt;<a href="http://url.cn/5nBUz3J"></a></span><span style="font-family: 'times new roman', times;"><a href="http://url.cn/5nBUz3J"><span style="color: #0000ff;">购买VASP源代码,qvasp免费软件让全命令式操作变得更加简单</span></a>&nbsp;&gt;&gt;</span></span></strong></span></p> <p style="font-size: 12.8px;"><span style="color: #0000ff;"><strong><span style="font-size: 12pt;"><span style="font-family: 'times new roman', times;">&nbsp;</span></span></strong></span></p> <p><span style="font-family: times new roman,times;"><span style="color: #800000;"><span style="color: #000000;">&nbsp;&nbsp;&nbsp; &nbsp; &nbsp; VASP是维也纳大学Hafner小组开发的进行电子结构计算和量子力学-分子动力学模拟软件包。它是目前材料模拟和计算物质科学研究中最流行的商用软件之一。<br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; VASP通过近似求解Schrödinger方程得到体系的电子态和能量,既可以在密度泛函理论(DFT)框架内求解Kohn-Sham方程(已实现了混合(hybrid)泛函计算),也可以在Hartree-Fock(HF)的近似下求解Roothaan方程。此外,VASP也支持格林函数方法(GW准粒子近似,ACFDT-RPA)和微扰理论(二阶Møller-Plesset)。<br />&nbsp;&nbsp;&nbsp; &nbsp;&nbsp; VASP使用平面波基组,电子与离子间的相互作用使用模守恒赝势(NCPP)、超软赝势(USPP)或投影扩充波(PAW)方法描述。<br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; VASP使用高效的矩阵对角化技术求解电子基态。在迭代求解过程中采用了Broyden和Pulay密度混合方案加速自洽循环的收敛。VASP可以自动确定任意构型的对称性。利用对称性可方便地设定Monkhorst-Pack特殊点,可用于高效地计算体材料和对称团簇。Brillouin区的积分使用模糊方法或Blöchl改进的四面体布点-积分方法,实现更快的k点收敛。</span></span><strong><span style="color: #800000;"><br /></span></strong></span></p> <hr /> <p><span style="font-size: 12pt; font-family: times new roman,times;"><strong><span style="color: #800000;">VASP的主要功能:</span></strong></span></p> <p><span style="font-size: 12pt;"><strong><span style="color: #800000;">&nbsp;</span></strong></span></p> <p><span style="color: #000000; font-family: times new roman,times;"><strong>1. 泛函</strong><br />&nbsp; - 电子交换相关函数:LDA;GGAs(PBE,AM05,PBEsol);metaGGAs<br />&nbsp; - 精确的非局域交换和杂化泛函:Hartree-Fork方法;Hartree-Fork/DFT混合,特别是PBE0和HSE06,B3LYP;屏蔽交换</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>2. 结构性质<img style="float: right;" src="images/Hongcam_images/VASP_images/vasp01.jpg" alt="" width="301" height="270" /></strong><br />&nbsp; - 晶格结构参数:鍵长、鍵角、晶格常数、原子位置<br />&nbsp; - 电子结构:能级、电荷密度分布、能带和电子态密度、电子局域函数</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>3. 能量导数</strong><br />&nbsp; - 力常数和应力</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>4. 动力学与弛豫</strong><br />&nbsp; - 从头算分子动力学:Born-Oppenheimer分子动力学<br />&nbsp; - 离子弛豫方法:共轭梯度(conjugate gradient), 准牛顿(Quasi-Newton), 阻尼分子动力学(damped molecular dynamics)<br />&nbsp; - 过渡态搜索:Nudged elastic band</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>5. 磁性</strong><br />&nbsp; - 共线和非共线性磁性<br />&nbsp; - 自旋轨道耦合<br />&nbsp; - 约束磁矩(magnetic moments)方法</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>6. 对静电场下的线性响应</strong><br />&nbsp; - 静态介电张量<br />&nbsp; - Born有效电荷张量<br />&nbsp; - 压电张量(包含离子贡献)</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>7. 对离子位置的线性响应<img style="float: right;" src="images/Hongcam_images/VASP_images/vasp02.jpg" alt="" width="283" height="294" /></strong><br />&nbsp; - 原子间力常数和声子<br />&nbsp; - 体弹性模量、弹性常数(包含离子贡献)<br />&nbsp; - 内应变张量</span></p> <p><span style="color: #000000; font-family: times new roman,times;">&nbsp;</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><strong>8. 光学性质</strong><br />&nbsp; - 频率相关介电张量:独立粒子近似或GW的随机相近似(RPA)<br />&nbsp; - RPA和TD-DFT计算介电张量<br />&nbsp; - TD-DFT和TD-Hartree-Fork下求解Cassida方程(仅能用于非自旋极化的Tamm-Dancoff近似)</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>9. 格林函数方法</strong><br />&nbsp; - GW准粒子近似<br />&nbsp; - GW顶点的Bethe-Salpeter(仅能用于非自旋极化的Tamm-Dancoff近似)<br />&nbsp; - RPA近似下ACFDT总能</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>10. Berry相位</strong><br />&nbsp; - 宏观极化<br />&nbsp; - 有限电场</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>11. 多体微绕理论</strong><br />&nbsp; - 二阶Møller-Plesset微绕理论</span></p> <p><span style="font-family: times new roman,times; font-size: 14pt;"><strong><span style="color: #800000;">VASP&nbsp;&nbsp;&nbsp; 北京宏剑公司提供代购和培训安装服务</span></strong></span></p> <p><span style="font-size: 12pt; font-family: times new roman,times;"><strong><a href="http://www.goscience.cn/"><span style="color: #800000;">更多vasp<strong style="font-family: 'times new roman', times; font-size: 16px;"><span style="color: #800000;">视频</span></strong>培训教程请在直答理工网查阅<strong style="font-family: 'times new roman', times; font-size: 16px;"><span style="color: #800000;"></span></strong></span></a><strong style="font-family: 'times new roman', times; font-size: 16px;"><a href="http://www.goscience.cn/"><span style="color: #800000;"></span></a></strong></strong></span><strong><span style="color: #800000;">(<a href="http://www.goscience.cn/"><span style="color: #800000;">http://www.goscience.cn/</span></a>)</span><span style="color: #800000;"><a href="http://www.goscience.cn/"><span style="color: #800000;"></span></a></span></strong><span style="font-size: 0.8em;"><br /></span></p> <p><span style="font-size: 12pt; font-family: times new roman,times;"><strong><span style="color: #800000;">&nbsp;</span></strong></span></p> <p><span style="color: #800000;"><span style="font-family: 'times new roman', times; color: #0000ff;"><strong>独家采用成本分块报价,实现利润,税金,成本透明清晰,让你知道和接受的利润金额。</strong></span><span style="font-family: 'times new roman', times;"><strong><span style="color: #0000ff;">来信索取"VASP成本透明报价单”</span>,<span><span style="color: #800000;">sales@hongcam.com.cn</span></span></strong></span></span><strong style="font-family: 'times new roman', times; font-size: 12pt;">&nbsp;</strong></p> <p><strong style="font-family: 'times new roman', times; font-size: 12pt;">&nbsp;</strong></p> <p style="font-size: 12.8px;"><span style="color: #0000ff;"><strong><span style="font-size: 12pt;"><span style="font-family: 'times new roman', times;">&lt;&lt;<a href="http://url.cn/5nBUz3J"></a></span><span style="font-family: 'times new roman', times;"><a href="http://url.cn/5nBUz3J"><span style="color: #0000ff;">购买VASP源代码,qvasp免费软件让全命令式操作变得更加简单</span></a>&nbsp;&gt;&gt;</span></span></strong></span></p> <p style="font-size: 12.8px;"><span style="color: #0000ff;"><strong><span style="font-size: 12pt;"><span style="font-family: 'times new roman', times;">&nbsp;</span></span></strong></span></p> <p><span style="font-family: times new roman,times;"><span style="color: #800000;"><span style="color: #000000;">&nbsp;&nbsp;&nbsp; &nbsp; &nbsp; VASP是维也纳大学Hafner小组开发的进行电子结构计算和量子力学-分子动力学模拟软件包。它是目前材料模拟和计算物质科学研究中最流行的商用软件之一。<br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; VASP通过近似求解Schrödinger方程得到体系的电子态和能量,既可以在密度泛函理论(DFT)框架内求解Kohn-Sham方程(已实现了混合(hybrid)泛函计算),也可以在Hartree-Fock(HF)的近似下求解Roothaan方程。此外,VASP也支持格林函数方法(GW准粒子近似,ACFDT-RPA)和微扰理论(二阶Møller-Plesset)。<br />&nbsp;&nbsp;&nbsp; &nbsp;&nbsp; VASP使用平面波基组,电子与离子间的相互作用使用模守恒赝势(NCPP)、超软赝势(USPP)或投影扩充波(PAW)方法描述。<br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; VASP使用高效的矩阵对角化技术求解电子基态。在迭代求解过程中采用了Broyden和Pulay密度混合方案加速自洽循环的收敛。VASP可以自动确定任意构型的对称性。利用对称性可方便地设定Monkhorst-Pack特殊点,可用于高效地计算体材料和对称团簇。Brillouin区的积分使用模糊方法或Blöchl改进的四面体布点-积分方法,实现更快的k点收敛。</span></span><strong><span style="color: #800000;"><br /></span></strong></span></p> <hr /> <p><span style="font-size: 12pt; font-family: times new roman,times;"><strong><span style="color: #800000;">VASP的主要功能:</span></strong></span></p> <p><span style="font-size: 12pt;"><strong><span style="color: #800000;">&nbsp;</span></strong></span></p> <p><span style="color: #000000; font-family: times new roman,times;"><strong>1. 泛函</strong><br />&nbsp; - 电子交换相关函数:LDA;GGAs(PBE,AM05,PBEsol);metaGGAs<br />&nbsp; - 精确的非局域交换和杂化泛函:Hartree-Fork方法;Hartree-Fork/DFT混合,特别是PBE0和HSE06,B3LYP;屏蔽交换</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>2. 结构性质<img style="float: right;" src="images/Hongcam_images/VASP_images/vasp01.jpg" alt="" width="301" height="270" /></strong><br />&nbsp; - 晶格结构参数:鍵长、鍵角、晶格常数、原子位置<br />&nbsp; - 电子结构:能级、电荷密度分布、能带和电子态密度、电子局域函数</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>3. 能量导数</strong><br />&nbsp; - 力常数和应力</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>4. 动力学与弛豫</strong><br />&nbsp; - 从头算分子动力学:Born-Oppenheimer分子动力学<br />&nbsp; - 离子弛豫方法:共轭梯度(conjugate gradient), 准牛顿(Quasi-Newton), 阻尼分子动力学(damped molecular dynamics)<br />&nbsp; - 过渡态搜索:Nudged elastic band</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>5. 磁性</strong><br />&nbsp; - 共线和非共线性磁性<br />&nbsp; - 自旋轨道耦合<br />&nbsp; - 约束磁矩(magnetic moments)方法</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>6. 对静电场下的线性响应</strong><br />&nbsp; - 静态介电张量<br />&nbsp; - Born有效电荷张量<br />&nbsp; - 压电张量(包含离子贡献)</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>7. 对离子位置的线性响应<img style="float: right;" src="images/Hongcam_images/VASP_images/vasp02.jpg" alt="" width="283" height="294" /></strong><br />&nbsp; - 原子间力常数和声子<br />&nbsp; - 体弹性模量、弹性常数(包含离子贡献)<br />&nbsp; - 内应变张量</span></p> <p><span style="color: #000000; font-family: times new roman,times;">&nbsp;</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><strong>8. 光学性质</strong><br />&nbsp; - 频率相关介电张量:独立粒子近似或GW的随机相近似(RPA)<br />&nbsp; - RPA和TD-DFT计算介电张量<br />&nbsp; - TD-DFT和TD-Hartree-Fork下求解Cassida方程(仅能用于非自旋极化的Tamm-Dancoff近似)</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>9. 格林函数方法</strong><br />&nbsp; - GW准粒子近似<br />&nbsp; - GW顶点的Bethe-Salpeter(仅能用于非自旋极化的Tamm-Dancoff近似)<br />&nbsp; - RPA近似下ACFDT总能</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>10. Berry相位</strong><br />&nbsp; - 宏观极化<br />&nbsp; - 有限电场</span></p> <p><span style="color: #000000; font-family: times new roman,times;"><br /><strong>11. 多体微绕理论</strong><br />&nbsp; - 二阶Møller-Plesset微绕理论</span></p> 产品-Phonon 1970-01-01T00:00:00+00:00 1970-01-01T00:00:00+00:00 http://www.hongcam.com.cn/index.php/product/materials/phonon <p><strong><span style="color: #800000;" class="bt2"><span style="font-family: times new roman,times; font-size: 12pt;"><span class="bt">Phonon</span>&nbsp; Software</span></span><span style="color: #800000; font-size: 14pt;" class="bt2"><br /></span></strong></p> <p>&nbsp;</p> <p class="zi" align="left"><span style="color: #000000;">&nbsp;&nbsp; <span style="font-family: times new roman,times; font-size: 10pt;"> &nbsp; Phonon程序使用直接法计算声子色散曲线、Γ点的不可约表示、声子态密度、热力学函数、Debey-Waller因子、非弹性中子散射与X射散射、介电常数等。用来作为Phonon输入的Hellman-Feynman力数据可以由第一原理程序如VASP、Wien2k、Siesta等程序对超晶胞计算得到。</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">&nbsp; &nbsp;&nbsp;&nbsp; Phonon可以处理任意空间群称性的晶格动力学,也可以理表面、多层的片结构以及缺陷晶格。</span><br /></span></p> <p align="left"><span style="font-size: 10pt;"><strong><span style="color: #000000;">&nbsp;</span></strong></span></p> <p align="left"><span style="color: #800000; font-family: times new roman,times; font-size: 10pt;"><strong>Phonon可以计算的性质:</strong></span></p> <p align="left"><span style="color: #000000; font-family: times new roman,times; font-size: 10pt;">声子色散关系;<br />确定软模的存在,以及弛豫路径方向。模也可以用来确定过渡。<br />Γ点的TO和LO两个光学模式,以及他们的不可约表示。<br />用鼠标选定模式并显示振动画;<br />在布里渊区里搜索最强的声子模式;<br />声子态密度;<br />指定原子沿指定方向的分波声子态密度;<br />热力学函数内能(E)、熵(S)、自由能(F)、恒容容(Cv)随温度的变化关系<br />Debye-Waller因子随温度的变化关系;<br />指定布里渊区里指定声子支的非弹性相干中子散射强度;<br />单晶和多晶的非弹性非相干中子散射谱;<br />指定布里渊区里指定声子支的非弹性X射散射强度;<br />声子对介张量的贡献;<br />红外吸收强度。<br /></span></p> <p><strong><span style="color: #800000; font-size: 14pt;" class="bt2"><span style="color: #000000; font-size: 10pt; font-family: times new roman,times;"><span style="color: #000000;"></span></span><br /></span></strong></p> <p><strong><span style="color: #800000; font-size: 14pt;" class="bt2"><span style="color: #000000; font-size: 12pt;"><span style="color: #000000;">&nbsp;</span></span></span></strong></p> <p style="text-align: justify;"><strong><span style="color: #800000; font-size: 14pt;" class="bt2"><span style="color: #000000; font-size: 12pt;"><span style="color: #000000;"><img src="images/Hongcam_images/Phonon_images/phonon1.jpg" alt="" height="380" width="506" /></span></span></span></strong></p> <p><strong><span style="color: #800000;" class="bt2"><span style="font-family: times new roman,times; font-size: 12pt;"><span class="bt">Phonon</span>&nbsp; Software</span></span><span style="color: #800000; font-size: 14pt;" class="bt2"><br /></span></strong></p> <p>&nbsp;</p> <p class="zi" align="left"><span style="color: #000000;">&nbsp;&nbsp; <span style="font-family: times new roman,times; font-size: 10pt;"> &nbsp; Phonon程序使用直接法计算声子色散曲线、Γ点的不可约表示、声子态密度、热力学函数、Debey-Waller因子、非弹性中子散射与X射散射、介电常数等。用来作为Phonon输入的Hellman-Feynman力数据可以由第一原理程序如VASP、Wien2k、Siesta等程序对超晶胞计算得到。</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">&nbsp; &nbsp;&nbsp;&nbsp; Phonon可以处理任意空间群称性的晶格动力学,也可以理表面、多层的片结构以及缺陷晶格。</span><br /></span></p> <p align="left"><span style="font-size: 10pt;"><strong><span style="color: #000000;">&nbsp;</span></strong></span></p> <p align="left"><span style="color: #800000; font-family: times new roman,times; font-size: 10pt;"><strong>Phonon可以计算的性质:</strong></span></p> <p align="left"><span style="color: #000000; font-family: times new roman,times; font-size: 10pt;">声子色散关系;<br />确定软模的存在,以及弛豫路径方向。模也可以用来确定过渡。<br />Γ点的TO和LO两个光学模式,以及他们的不可约表示。<br />用鼠标选定模式并显示振动画;<br />在布里渊区里搜索最强的声子模式;<br />声子态密度;<br />指定原子沿指定方向的分波声子态密度;<br />热力学函数内能(E)、熵(S)、自由能(F)、恒容容(Cv)随温度的变化关系<br />Debye-Waller因子随温度的变化关系;<br />指定布里渊区里指定声子支的非弹性相干中子散射强度;<br />单晶和多晶的非弹性非相干中子散射谱;<br />指定布里渊区里指定声子支的非弹性X射散射强度;<br />声子对介张量的贡献;<br />红外吸收强度。<br /></span></p> <p><strong><span style="color: #800000; font-size: 14pt;" class="bt2"><span style="color: #000000; font-size: 10pt; font-family: times new roman,times;"><span style="color: #000000;"></span></span><br /></span></strong></p> <p><strong><span style="color: #800000; font-size: 14pt;" class="bt2"><span style="color: #000000; font-size: 12pt;"><span style="color: #000000;">&nbsp;</span></span></span></strong></p> <p style="text-align: justify;"><strong><span style="color: #800000; font-size: 14pt;" class="bt2"><span style="color: #000000; font-size: 12pt;"><span style="color: #000000;"><img src="images/Hongcam_images/Phonon_images/phonon1.jpg" alt="" height="380" width="506" /></span></span></span></strong></p> 产品-Crystal 1970-01-01T00:00:00+00:00 1970-01-01T00:00:00+00:00 http://www.hongcam.com.cn/index.php/product/materials/crystal hongcam hong@hongcam.com.cn <h1 style="text-align: left;"><span style="color: #993300; font-family: times new roman,times; font-size: 14pt;"><strong><span style="text-align: justify;">CRYSTAL</span> </strong></span></h1> <p style="text-align: left;"><span style="font-family: times new roman,times;">&nbsp;<span style="font-size: 10pt;"> &nbsp; &nbsp; &nbsp; CRYSTAL是第一个公开发布的研究晶体的程序,自1988年第一个版本以来,CRYSTAL发布了92、95、98、03、06、09、14、17八个版本。CRYSTAL程序使用Hartree-Fock、密度泛函或各种混合近似方法计算周期体系的电子态结构,所用的周期体系的Bloch函数用以原子为中心的高斯函数的线性组合展开。程序还使用了屏蔽技术以充分利用实空间的局域化特性。程序使用全电子基组或者价电子基组(有效核势)进行限制性闭壳层,限制性开壳层,或者非限制性计算。程序可以正确处理空间对称性(230个空间群,80个平面群,99个柱形群,45个点群)。点群对称性与平移对称性可以在分子体系上兼容。CRYSTAL的输入工具可以从三维晶体结构产生层状结构(二维体系)或者团簇(零维体系),创建缺陷体系的超晶胞,还可以从一个单层结构(二维体系)创建纳米管(一维体系)。</span></span><br /><span style="font-family: times new roman,times; font-size: 10pt;">&nbsp; &nbsp;&nbsp;&nbsp; CRYSTAL可以用来研究分子、多聚物、表面和晶体的物理性质和化学性质。例如:几何结构、振动性质、电子态结构、磁学性质、介电性质、弹性等。</span></p> <p style="text-align: justify;">&nbsp;</p> <h4 style="text-align: justify;"><span style="color: #993300; font-family: times new roman,times; font-size: 12pt;"><strong>CRYSTAL17新特性快速浏览</strong></span></h4> <p><span style="color: #993300; font-family: times new roman,times; font-size: 12pt;"><strong><span style="color: #848484; font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee;">New features with respect to CRYSTAL14 are in&nbsp;</span><i style="color: #848484; font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee;">italics</i><span style="color: #848484; font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee;">&nbsp;and&nbsp;</span><span color="#CC0000" style="font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee; color: #cc0000;">red</span><span style="color: #848484; font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee;"></span></strong></span></p> <h3 style="padding-top: 6px; padding-bottom: 6px; font-family: MyriadProRegular, Arial, Helvetica, sans-serif; font-size: 16px; color: #4e9ab8; background-color: #eeeeee;">Hamiltonians</h3> <p>&nbsp;</p> <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px; color: #848484; font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee;"> <li><b>Hartree-Fock Theory</b> <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px;"> <li>Restricted (RHF)</li> <li>Unrestricted (UHF)</li> <li><i><span color="#CC0000" style="color: #cc0000;">Restricted-Open (ROHF)</span></i></li> </ul> </li> </ul> <p>&nbsp;</p> <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px; color: #848484; font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee;"> <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px; color: #848484; font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee;"> <li><b>Density Functional Theory</b> <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px;"> <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px;"> <li>Semilocal functionals: local [L], gradient-corrected [G] and meta-GGA (tau-dependent) [T]</li> <li>Hybrid HF-DFT functionals <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px;"> <li>Global hybrids: B3PW, B3LYP (using the VWN5 functional), PBE0 and more</li> <li>Range-separated hybrids: <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px;"> <li>Screened-Coulomb (SC): HSE06, HSEsol,&nbsp;<i><span color="#CC0000" style="color: #cc0000;">SC-BLYP</span></i></li> <li>Middle-range (MC): HISS</li> <li>Long-range Corrected (LC): LC-wPBE, LC-wPBEsol, wB97, wB97-X, RSHXLDA,&nbsp;<i><span color="#CC0000" style="color: #cc0000;">LC-BLYP, CAM-B3LYP</span></i></li> </ul> </li> </ul> </li> <li>Minnesota semilocal and hybrid functionals: <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px;"> <li>M05 family: M05, M05-2X</li> <li>M06 family: M06, M06-2X, M06-HF, M06-L</li> </ul> </li> <li>Double hybrid functionals: B2-PLYP, mPW2-PLYP, B2GP-PLYP</li> <li>User-defined hybrid functionals</li> <li><i><span color="#CC0000" style="color: #cc0000;">Self-consistent global hybrid functionals (sc-hyb)</span></i></li> <li>Numerical-grid based numerical quadrature scheme</li> <li>London-type empirical correction for dispersion interactions (DFT-D2 scheme)</li> <li><i><span color="#CC0000" style="color: #cc0000;">DFT-D3 correction for dispersive interactions. Automated, parameter-free implementation</span></i></li> </ul> </ul> <i><span color="#CC0000" style="color: #cc0000;"></span></i></li> </ul> </ul> <p>&nbsp;</p> <ul> <li><i>Grimme’s geometrical CounterPoise (gCP) empirical correction to remove the BSSE</i></li> </ul> <p>&nbsp;</p> <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px; color: #848484; font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee;"> <li><i><span color="#CC0000" style="color: #cc0000;">Composite methods for molecular crystals: HF-3c, PBEh-3c, HSE-3c and B97-3c</span></i></li> </ul> <p><span style="color: #993300; font-family: times new roman,times; font-size: 12pt;"><strong>&nbsp;</strong></span></p> <p><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">耦合微扰HF/KS方法</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">计算静态极化率、介电张量、折射指数、双折射、光轴;周期体系还可以施加锯齿波有限场</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">直接法计算声子色散谱;Berry相位法计算红外强度</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">任意k点的声子频率采用直接计算超晶胞的Hessian矩阵的方法,并充分利用对称性找到超晶胞原子组位移,大大减少了计算量。可以更精确计算热力学性质。振动频率可以与中子散射实验谱比较。红外强度计算新增了Berry相位法,这种方法比局域Wannier函数方法更节省计算量。</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">过渡态搜索</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">优化鞍点几何结构,寻找分子、聚合物和晶体的过渡态结构。利用过渡态搜索功能可以研究周期体系中的原子结构关系,例如多相催化机理。</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">外加衡压下的对晶格常数和原子位置进行几何结构优化</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">同时实现了从对晶胞参数的解析梯度计算弹性张量、压力、焓的方法。</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">自动计算晶体的弹性张量</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">全自动采用数值方法从解析梯度计算具有任意对称性晶体的二阶弹性系数。对每个施加的应力,内部坐标都重新进行优化。程序充分利用点群对称性减少形变的数目。</span></p> <p><span style="font-family: times new roman,times; font-size: 10pt;">&nbsp;</span></p> <p style="text-align: justify;"><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">自动计算能量(E)-体积(V)状态方程</span></p> <p><span style="font-family: times new roman,times; font-size: 10pt;">自动计算一系列指定体积的能量得到能量-体积(E-V)曲线关系,结果可以拟合为常见的状态方程和多项式关系。</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">新增多种GGA泛函</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">PBEsol交换关联泛函、Wu-Cohen 交换泛函、Zhao-Truhlar的SOGGA交换泛函;Wilson-Levy关联泛函。</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">Grimme方法模拟色散力</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">方法使用London型半经验校正Grimme方法计算总能量和梯度,因此可以用于总能量计算、几何结构优化和振动频率计算</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">从单层结构自动产生纳米管</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">从二维或三维的层状结构生成具有螺旋对称性的纳米管(最高到48阶)。由于对称性的充分利用,使用HF/DFT混合泛函和高质量的基组计算几百个原子的体系消耗的计算量并不高。采用旋转-平移对称性处理高分子螺旋结构(最高到48阶)。</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">新方法处理d、f轨道半充满原子SCF过程的初始猜测</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">更好的控制初始猜测,使SCF过程收敛更容易。</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">新方法处理固溶体</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">通过产生一系列的二体替位模型,找到合理的构型并进行统计计算。改进处理电子动量密度分析和康普顿散射轮廓(Compton Profile)。</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">改进的大规模并行版本</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">MPPCrystal,内存分布式并行计算版本(计算效率测试如下图)。</span></p> <p><img src="images/Hongcam_images/Crystal_images/Crystal01.jpg" alt="Crystal01" style="display: block; margin-left: auto; margin-right: auto;" height="186" width="356" /></p> <p style="text-align: justify;"><span style="color: #993300;"><strong>&nbsp;</strong></span></p> <h1 style="text-align: left;"><span style="color: #993300; font-family: times new roman,times; font-size: 14pt;"><strong><span style="text-align: justify;">CRYSTAL</span> </strong></span></h1> <p style="text-align: left;"><span style="font-family: times new roman,times;">&nbsp;<span style="font-size: 10pt;"> &nbsp; &nbsp; &nbsp; CRYSTAL是第一个公开发布的研究晶体的程序,自1988年第一个版本以来,CRYSTAL发布了92、95、98、03、06、09、14、17八个版本。CRYSTAL程序使用Hartree-Fock、密度泛函或各种混合近似方法计算周期体系的电子态结构,所用的周期体系的Bloch函数用以原子为中心的高斯函数的线性组合展开。程序还使用了屏蔽技术以充分利用实空间的局域化特性。程序使用全电子基组或者价电子基组(有效核势)进行限制性闭壳层,限制性开壳层,或者非限制性计算。程序可以正确处理空间对称性(230个空间群,80个平面群,99个柱形群,45个点群)。点群对称性与平移对称性可以在分子体系上兼容。CRYSTAL的输入工具可以从三维晶体结构产生层状结构(二维体系)或者团簇(零维体系),创建缺陷体系的超晶胞,还可以从一个单层结构(二维体系)创建纳米管(一维体系)。</span></span><br /><span style="font-family: times new roman,times; font-size: 10pt;">&nbsp; &nbsp;&nbsp;&nbsp; CRYSTAL可以用来研究分子、多聚物、表面和晶体的物理性质和化学性质。例如:几何结构、振动性质、电子态结构、磁学性质、介电性质、弹性等。</span></p> <p style="text-align: justify;">&nbsp;</p> <h4 style="text-align: justify;"><span style="color: #993300; font-family: times new roman,times; font-size: 12pt;"><strong>CRYSTAL17新特性快速浏览</strong></span></h4> <p><span style="color: #993300; font-family: times new roman,times; font-size: 12pt;"><strong><span style="color: #848484; font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee;">New features with respect to CRYSTAL14 are in&nbsp;</span><i style="color: #848484; font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee;">italics</i><span style="color: #848484; font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee;">&nbsp;and&nbsp;</span><span color="#CC0000" style="font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee; color: #cc0000;">red</span><span style="color: #848484; font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee;"></span></strong></span></p> <h3 style="padding-top: 6px; padding-bottom: 6px; font-family: MyriadProRegular, Arial, Helvetica, sans-serif; font-size: 16px; color: #4e9ab8; background-color: #eeeeee;">Hamiltonians</h3> <p>&nbsp;</p> <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px; color: #848484; font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee;"> <li><b>Hartree-Fock Theory</b> <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px;"> <li>Restricted (RHF)</li> <li>Unrestricted (UHF)</li> <li><i><span color="#CC0000" style="color: #cc0000;">Restricted-Open (ROHF)</span></i></li> </ul> </li> </ul> <p>&nbsp;</p> <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px; color: #848484; font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee;"> <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px; color: #848484; font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee;"> <li><b>Density Functional Theory</b> <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px;"> <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px;"> <li>Semilocal functionals: local [L], gradient-corrected [G] and meta-GGA (tau-dependent) [T]</li> <li>Hybrid HF-DFT functionals <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px;"> <li>Global hybrids: B3PW, B3LYP (using the VWN5 functional), PBE0 and more</li> <li>Range-separated hybrids: <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px;"> <li>Screened-Coulomb (SC): HSE06, HSEsol,&nbsp;<i><span color="#CC0000" style="color: #cc0000;">SC-BLYP</span></i></li> <li>Middle-range (MC): HISS</li> <li>Long-range Corrected (LC): LC-wPBE, LC-wPBEsol, wB97, wB97-X, RSHXLDA,&nbsp;<i><span color="#CC0000" style="color: #cc0000;">LC-BLYP, CAM-B3LYP</span></i></li> </ul> </li> </ul> </li> <li>Minnesota semilocal and hybrid functionals: <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px;"> <li>M05 family: M05, M05-2X</li> <li>M06 family: M06, M06-2X, M06-HF, M06-L</li> </ul> </li> <li>Double hybrid functionals: B2-PLYP, mPW2-PLYP, B2GP-PLYP</li> <li>User-defined hybrid functionals</li> <li><i><span color="#CC0000" style="color: #cc0000;">Self-consistent global hybrid functionals (sc-hyb)</span></i></li> <li>Numerical-grid based numerical quadrature scheme</li> <li>London-type empirical correction for dispersion interactions (DFT-D2 scheme)</li> <li><i><span color="#CC0000" style="color: #cc0000;">DFT-D3 correction for dispersive interactions. Automated, parameter-free implementation</span></i></li> </ul> </ul> <i><span color="#CC0000" style="color: #cc0000;"></span></i></li> </ul> </ul> <p>&nbsp;</p> <ul> <li><i>Grimme’s geometrical CounterPoise (gCP) empirical correction to remove the BSSE</i></li> </ul> <p>&nbsp;</p> <ul style="margin-top: 10px; margin-bottom: 10px; margin-left: 20px; color: #848484; font-family: Arial, Thaoma, Helvetica, sans-serif; font-size: 12px; background-color: #eeeeee;"> <li><i><span color="#CC0000" style="color: #cc0000;">Composite methods for molecular crystals: HF-3c, PBEh-3c, HSE-3c and B97-3c</span></i></li> </ul> <p><span style="color: #993300; font-family: times new roman,times; font-size: 12pt;"><strong>&nbsp;</strong></span></p> <p><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">耦合微扰HF/KS方法</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">计算静态极化率、介电张量、折射指数、双折射、光轴;周期体系还可以施加锯齿波有限场</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">直接法计算声子色散谱;Berry相位法计算红外强度</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">任意k点的声子频率采用直接计算超晶胞的Hessian矩阵的方法,并充分利用对称性找到超晶胞原子组位移,大大减少了计算量。可以更精确计算热力学性质。振动频率可以与中子散射实验谱比较。红外强度计算新增了Berry相位法,这种方法比局域Wannier函数方法更节省计算量。</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">过渡态搜索</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">优化鞍点几何结构,寻找分子、聚合物和晶体的过渡态结构。利用过渡态搜索功能可以研究周期体系中的原子结构关系,例如多相催化机理。</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">外加衡压下的对晶格常数和原子位置进行几何结构优化</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">同时实现了从对晶胞参数的解析梯度计算弹性张量、压力、焓的方法。</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">自动计算晶体的弹性张量</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">全自动采用数值方法从解析梯度计算具有任意对称性晶体的二阶弹性系数。对每个施加的应力,内部坐标都重新进行优化。程序充分利用点群对称性减少形变的数目。</span></p> <p><span style="font-family: times new roman,times; font-size: 10pt;">&nbsp;</span></p> <p style="text-align: justify;"><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">自动计算能量(E)-体积(V)状态方程</span></p> <p><span style="font-family: times new roman,times; font-size: 10pt;">自动计算一系列指定体积的能量得到能量-体积(E-V)曲线关系,结果可以拟合为常见的状态方程和多项式关系。</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">新增多种GGA泛函</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">PBEsol交换关联泛函、Wu-Cohen 交换泛函、Zhao-Truhlar的SOGGA交换泛函;Wilson-Levy关联泛函。</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">Grimme方法模拟色散力</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">方法使用London型半经验校正Grimme方法计算总能量和梯度,因此可以用于总能量计算、几何结构优化和振动频率计算</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">从单层结构自动产生纳米管</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">从二维或三维的层状结构生成具有螺旋对称性的纳米管(最高到48阶)。由于对称性的充分利用,使用HF/DFT混合泛函和高质量的基组计算几百个原子的体系消耗的计算量并不高。采用旋转-平移对称性处理高分子螺旋结构(最高到48阶)。</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">新方法处理d、f轨道半充满原子SCF过程的初始猜测</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">更好的控制初始猜测,使SCF过程收敛更容易。</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">新方法处理固溶体</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">通过产生一系列的二体替位模型,找到合理的构型并进行统计计算。改进处理电子动量密度分析和康普顿散射轮廓(Compton Profile)。</span></p> <p><br /><span style="color: #993300; font-family: times new roman,times; font-size: 10pt;">改进的大规模并行版本</span><br /><span style="font-family: times new roman,times; font-size: 10pt;">MPPCrystal,内存分布式并行计算版本(计算效率测试如下图)。</span></p> <p><img src="images/Hongcam_images/Crystal_images/Crystal01.jpg" alt="Crystal01" style="display: block; margin-left: auto; margin-right: auto;" height="186" width="356" /></p> <p style="text-align: justify;"><span style="color: #993300;"><strong>&nbsp;</strong></span></p> 产品-Match! 2012-06-11T13:25:00+00:00 2012-06-11T13:25:00+00:00 http://www.hongcam.com.cn/index.php/product/materials/match-more hongcam hong@hongcam.com.cn <p><span style="color: #800000; font-size: 14pt; font-family: times new roman,times;"><strong>粉末衍射数据分析软件Match!</strong></span></p> <p><span style="font-size: 14pt; font-family: times new roman,times;"><span style="font-size: 10pt; color: #000000;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Match!是一个易用的软件,从粉末衍射数据中鉴定相位,这几乎是材料科学家每天的工作。Match!作为参考数据库,我们推荐您应用ICDD PDF-2 or PDF-4 databases.除了这个您还可以以您自己的衍射样品建立自己的用户数据库,这个用户的样品数据库可以通过手动的编辑,通过峰型文件输入,或者是通过晶体结构数据来计算,也可以加入你同事的数据为你所用,同样的数据不需要再一次的输入。</span></span><strong><span style="font-size: 14pt;"><br /></span></strong></p> <p><span style="font-size: 14pt; font-family: times new roman,times;"><span style="font-size: 10pt; color: #000000;"><img style="display: block; margin-left: auto; margin-right: auto;" src="images/Hongcam_images/Match_images/match1.jpg" alt="" /></span></span></p> <p>&nbsp;</p> <hr /> <p>&nbsp;</p> <h3 class="mainbody" style="font-size: 12pt; font-weight: bold; margin-top: 4px; margin-bottom: 8px; color: #000000; font-family: 'Segoe UI', Tahoma, Arial, Helvetica, sans-serif; text-align: justify;">New Match! version 3.6.2(<b style="color: #000000; font-family: 'Segoe UI', Tahoma, Arial, Helvetica, sans-serif; font-size: 13.3333px; text-align: justify;">June 18, 2018</b>)</h3> <p><strong><span style="font-family: times new roman,times; font-size: 12pt; color: #800000;">新版重要功能:</span></strong></p> <ul> <li>[Windows version only] If a new PDF database has been installed on the PC, Match! will detect this at program startup and ask the user if he would like to index and use it straight away.</li> <li>[Windows version only] New menu command "Database/Check for new PDF databases..."</li> <li>It is now possible to use FullProf for pattern calculation if only crystal structure data but no raw/profile data are present. At least one entry containing full crystal structure data must be present in the match list.</li> <li>New shortcut Ctrl+&lt; (Cmd+&lt; on the Mac) for "Previous zoom"</li> <li>New shortcut Alt+K for "Add peak(s)" command/dialog</li> <li>Mixed wavelengths Ni Kalpha, Mo Kalpha and Ag Kalpha have been added to the corresponding dropdown boxes.</li> <li>New file format "2theta vs. intensity (2 columns)" for "File/Export/Peak data"</li> <li>In the pattern graphics, more lines with peak positions and -correlations can now be displayed below the actual diffraction pattern.</li> <li>Several bugs have been fixed: <ul style="color: #000000; font-family: 'Segoe UI', Tahoma, Arial, Helvetica, sans-serif; font-size: 13.3333px; text-align: justify;"> <li>A bug causing a crash of the Match! program if a FullProf calculation was not successful (R_Bragg = NaN) has been fixed.</li> <li>A bug affecting the availability of the "Strip alpha2..." command has been fixed.</li> <li>Due to a bug in the indexing code for PDF-4 databases, some entry data (like origin choice, cell volume, color or Pearson code) were not available/used in Match!.<br />Note that re-indexation of the PDF-4 reference database is required in order to really fix this problem.</li> <li>Due to a bug, atoms may have been missing in the crystal structure data (parameter list) of PDF database entries. In order to fix this problem, a reindexation of the corresponding PDF database using Match! 3.6.2 (or later) is required.</li> <li>The alpha2-stripping did not work in case of Ag Kalpha radiation.</li> <li>We have fixed a bug that caused problems (and sometimes even a crash of the program) when correcting the wavelength if match list entries were present.</li> <li>Several bugs in the calculation of the integrated profile areas has been resolved.</li> <li>When modifying the peak intensity using the mouse in the pattern graphics, the intensity sometimes seemed to "jump".</li> <li>Peaks could not be marked by clicking on the peak positions in the pattern graphics if the background curve was displayed.</li> <li>Exporting of the candidate or match list to a pdf-file caused an error message "Cannot find HTML information/file to be printed.".</li> <li>A variety of bugs affecting the User Database Manager have been fixed.</li> <li>A large variety of minor bugs has also been fixed.</li> </ul> </li> </ul> <p>&nbsp;</p> <hr /> <p><span style="color: #000000; font-size: 10pt;"><span style="font-family: times new roman,times;"><span style="color: #800000; font-size: 12pt;"><strong>其他功能:</strong></span></span></span></p> <ul> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Fast single and multiple phase identification from powder diffraction data </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Use free-of-charge reference patterns calculated from the COD (incl. I/Ic), any ICDD PDF database, any ICSD/Retrieve version (released 1993-2002; valid licence required) and/or your own diffraction data (or patterns calculated from crystal structure data (e.g. CIF files)) in phase identification </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Flexible handling of reference databases (incl. user databases); you can easily switch between different reference databases without the necessity to perform a new database indexation </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Create reference databases for X-ray and neutron diffraction e.g. from cif-files </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Comfortable user database manager for easy maintenance of user data (add/import/edit/delete/sort entries) </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Powerful CIF- and ICSD/Retrieve import, incl. calculation of powder pattern, I/I<sub>c</sub> and density </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Atomic coordinates available e.g. in the ICSD, the ICDD PDF-4+ or free-of-charge reference data are displayed in the data sheets and included in the CIF- or Textfile-exports (e.g. for Rietveld analysis) </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Displaying of Miller indices (hkl) in diffraction patterns and entry data sheets </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Fully integrated handling of your own diffraction data with PDF data (search-match, retrieval, data viewing) </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Automatic residual searching with respect to identified phases </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Automatic raw data processing: α2-stripping, background subtraction, peak search, profile fitting, error correction </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Automatic optimization of peak searching sensitivity </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Fitting of all (or selected) peak parameters to exp. profile data </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Comfortable manual editing of peaks (add/shift/delete/fit) using mouse or keyboard </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Semi-quantitative analysis (Reference Intensity Ratio method) </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Straight-forward usage of additional knowledge (composition, PDF subfiles, crystallographic data, color, density etc.) </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Integrated database retrieval system and viewer for PDF, COD and user databases </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Multiple step undo/redo </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">User-configurable automatic operation </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Automatic d-value shifting during search-match process (optionally) </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Intensity contribution to figure-of-merit can be reduced for preferred-orientation cases </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Comfortable graphical and tabular comparison of peak data and candidate patterns </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">User-configurable reports (HTML, PDF or text file) </span></li> <li><span style="font-size: 10pt; font-family: 'Verdana','sans-serif'; color: #000000;"><span style="font-family: times new roman,times;">Online update (automatic or manual)</span></span></li> </ul> <p>&nbsp;</p> <hr /> <p><span style="font-size: 10pt; font-family: 'Verdana','sans-serif'; color: #000000;"><span style="font-family: times new roman,times;"></span></span><span style="font-size: 12pt;"><strong><span style="font-family: 'Verdana','sans-serif'; color: #800000;"><span style="font-family: times new roman,times;">支持的衍射数据格式:</span></span></strong></span></p> <ul> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">ASCII profile (start, step, intensities or 2 columns) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Bruker/Siemens raw data (old and new) (*.raw) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Bruker/Siemens DIFFRAC AT peak data (*.dif)&nbsp; </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">DBWS (*.rfl, *.dat) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">ENDEAVOUR peak list (2 columns: 2theta/d intensity; *.dif) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">G670 raw data (*.gdf) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Inel raw data (*.dat) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Ital Structures raw data (*.esg)&nbsp; </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Jade/MDI/SCINTAG raw data (*.mdi)&nbsp; </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">JEOL ASCII Export raw data (*.txt)&nbsp; </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">PANalytical XRDML Scan raw data (*.xrdml) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">PANalytical/Philips peak data (*.udi) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">PANalytical/Philips raw data (*.rd, *.udf) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Rigaku raw data (*.raw) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">SCINTAG raw data (*.raw, *.rd) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Shimadzu raw data (*.raw) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Siemens (*.uxd) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Sietronics XRD scan data (*.cpi) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Stoe raw data (*.raw) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Stoe peak data (*.pks)</span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;"><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">&nbsp;</span></span><hr style="font-size: 12.8px;" /><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;"></span></li> </ul> <table border="0" cellpadding="0" cellspacing="0" class="templateContainer" style="font-family: 微软雅黑; widows: 1; border-collapse: collapse; border: 0px; width: 100%;"> <tbody> <tr> <td valign="top" id="templateHeader" style="border-top: 5px none #000070; border-bottom-width: 0px;"> <table class="mcnTextBlock" border="0" cellspacing="0" cellpadding="0" style="min-width: 100%; border-collapse: collapse; width: 100%;"> <tbody class="mcnTextBlockOuter"> <tr> <td class="mcnTextBlockInner" valign="top" style="padding-top: 9px;"> <table align="left" class="mcnTextContentContainer" border="0" cellspacing="0" cellpadding="0" style="max-width: 100%; min-width: 100%; border-collapse: collapse; width: 100%;"> <tbody> <tr> <td class="mcnTextContent" valign="top" style="padding-right: 18px; padding-bottom: 9px; padding-left: 18px; color: #202020; font-family: Helvetica; font-size: 16px; line-height: 24px;"> <h1 style="margin-bottom: 0px; font-size: 26px; font-weight: bold; line-height: 32.5px;"><span style="font-size: 12pt;">New tutorial video explains how to set up ICDD PDF reference databases with Match!</span></h1> </td> </tr> </tbody> </table> </td> </tr> </tbody> </table> </td> </tr> <tr> <td valign="top" id="templateBody" style="border-top-width: 0px; border-bottom-width: 0px;"> <table class="mcnTextBlock" border="0" cellspacing="0" cellpadding="0" style="min-width: 100%; border-collapse: collapse; width: 100%;"> <tbody class="mcnTextBlockOuter"> <tr> <td class="mcnTextBlockInner" valign="top" style="padding-top: 9px;"> <table align="left" class="mcnTextContentContainer" border="0" cellspacing="0" cellpadding="0" style="max-width: 100%; min-width: 100%; border-collapse: collapse; width: 100%;"> <tbody> <tr> <td class="mcnTextContent" valign="top" style="padding-right: 18px; padding-bottom: 9px; padding-left: 18px; color: #202020; font-family: Helvetica; font-size: 16px; line-height: 24px;"> <div> <div><span style="font-size: 10pt;">Several customers reported that in their lab an ICDD PDF database product is available but is not used by Match!, basically because they did not know how to do it.</span><br />&nbsp;<span style="font-size: 10pt;">Hence, we have created a new video explaining what reference databases are in general, and how a PDF database can be used with Match! in particular:</span></div> </div> <div>&nbsp;<a href="https://crystalimpact.de/match/video_RefDB_Basics.htm" style="font-size: 10pt;">https://crystalimpact.de/match/video_RefDB_Basics.htm</a></div> </td> </tr> </tbody> </table> </td> </tr> </tbody> </table> </td> </tr> </tbody> </table> <p>&nbsp;</p> <hr style="font-size: 12.8px;" /> <p>&nbsp;</p> <p><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times; font-size: 12pt; color: #800000;"><strong>系统最低需求</strong></span></span></span></p> <ul> <li> <p><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;">Windows</span></span></span></p> <p><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;"><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;"><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;">Windows XP, Vista, Windows 7 or Windows 8<br />内存不小于1 GB<br />空余硬盘空间不小于1.5 GB<br />分辨率不小于1024 x 768<br /></span></span></span></span></span></span></span></span></span></p> </li> </ul> <ul> <li> <p><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;"><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;">Mac OS X</span></span></span></span></span></span></p> <p><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;"><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;">英特尔处理器、Mac OS X 10.5.8 "Leopard" 系统或以上<br />内存不小于1 GB <br />空余硬盘空间不小于1.5 GB <br />分辨率不小于1024 x 768</span></span></span></span></span></span></p> </li> </ul> <ul> <li> <p><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;">Linux</span></span></span></p> <p><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;">32位系统:OpenSUSE, Ubuntu, Fedora <br />内存不小于1 GB <br />空余硬盘空间不小于1.5 GB <br />分辨率不小于1024 x 768</span></span></span></p> </li> </ul> <p>&nbsp;</p> <p><span style="color: #800000; font-size: 14pt; font-family: times new roman,times;"><strong>粉末衍射数据分析软件Match!</strong></span></p> <p><span style="font-size: 14pt; font-family: times new roman,times;"><span style="font-size: 10pt; color: #000000;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Match!是一个易用的软件,从粉末衍射数据中鉴定相位,这几乎是材料科学家每天的工作。Match!作为参考数据库,我们推荐您应用ICDD PDF-2 or PDF-4 databases.除了这个您还可以以您自己的衍射样品建立自己的用户数据库,这个用户的样品数据库可以通过手动的编辑,通过峰型文件输入,或者是通过晶体结构数据来计算,也可以加入你同事的数据为你所用,同样的数据不需要再一次的输入。</span></span><strong><span style="font-size: 14pt;"><br /></span></strong></p> <p><span style="font-size: 14pt; font-family: times new roman,times;"><span style="font-size: 10pt; color: #000000;"><img style="display: block; margin-left: auto; margin-right: auto;" src="images/Hongcam_images/Match_images/match1.jpg" alt="" /></span></span></p> <p>&nbsp;</p> <hr /> <p>&nbsp;</p> <h3 class="mainbody" style="font-size: 12pt; font-weight: bold; margin-top: 4px; margin-bottom: 8px; color: #000000; font-family: 'Segoe UI', Tahoma, Arial, Helvetica, sans-serif; text-align: justify;">New Match! version 3.6.2(<b style="color: #000000; font-family: 'Segoe UI', Tahoma, Arial, Helvetica, sans-serif; font-size: 13.3333px; text-align: justify;">June 18, 2018</b>)</h3> <p><strong><span style="font-family: times new roman,times; font-size: 12pt; color: #800000;">新版重要功能:</span></strong></p> <ul> <li>[Windows version only] If a new PDF database has been installed on the PC, Match! will detect this at program startup and ask the user if he would like to index and use it straight away.</li> <li>[Windows version only] New menu command "Database/Check for new PDF databases..."</li> <li>It is now possible to use FullProf for pattern calculation if only crystal structure data but no raw/profile data are present. At least one entry containing full crystal structure data must be present in the match list.</li> <li>New shortcut Ctrl+&lt; (Cmd+&lt; on the Mac) for "Previous zoom"</li> <li>New shortcut Alt+K for "Add peak(s)" command/dialog</li> <li>Mixed wavelengths Ni Kalpha, Mo Kalpha and Ag Kalpha have been added to the corresponding dropdown boxes.</li> <li>New file format "2theta vs. intensity (2 columns)" for "File/Export/Peak data"</li> <li>In the pattern graphics, more lines with peak positions and -correlations can now be displayed below the actual diffraction pattern.</li> <li>Several bugs have been fixed: <ul style="color: #000000; font-family: 'Segoe UI', Tahoma, Arial, Helvetica, sans-serif; font-size: 13.3333px; text-align: justify;"> <li>A bug causing a crash of the Match! program if a FullProf calculation was not successful (R_Bragg = NaN) has been fixed.</li> <li>A bug affecting the availability of the "Strip alpha2..." command has been fixed.</li> <li>Due to a bug in the indexing code for PDF-4 databases, some entry data (like origin choice, cell volume, color or Pearson code) were not available/used in Match!.<br />Note that re-indexation of the PDF-4 reference database is required in order to really fix this problem.</li> <li>Due to a bug, atoms may have been missing in the crystal structure data (parameter list) of PDF database entries. In order to fix this problem, a reindexation of the corresponding PDF database using Match! 3.6.2 (or later) is required.</li> <li>The alpha2-stripping did not work in case of Ag Kalpha radiation.</li> <li>We have fixed a bug that caused problems (and sometimes even a crash of the program) when correcting the wavelength if match list entries were present.</li> <li>Several bugs in the calculation of the integrated profile areas has been resolved.</li> <li>When modifying the peak intensity using the mouse in the pattern graphics, the intensity sometimes seemed to "jump".</li> <li>Peaks could not be marked by clicking on the peak positions in the pattern graphics if the background curve was displayed.</li> <li>Exporting of the candidate or match list to a pdf-file caused an error message "Cannot find HTML information/file to be printed.".</li> <li>A variety of bugs affecting the User Database Manager have been fixed.</li> <li>A large variety of minor bugs has also been fixed.</li> </ul> </li> </ul> <p>&nbsp;</p> <hr /> <p><span style="color: #000000; font-size: 10pt;"><span style="font-family: times new roman,times;"><span style="color: #800000; font-size: 12pt;"><strong>其他功能:</strong></span></span></span></p> <ul> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Fast single and multiple phase identification from powder diffraction data </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Use free-of-charge reference patterns calculated from the COD (incl. I/Ic), any ICDD PDF database, any ICSD/Retrieve version (released 1993-2002; valid licence required) and/or your own diffraction data (or patterns calculated from crystal structure data (e.g. CIF files)) in phase identification </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Flexible handling of reference databases (incl. user databases); you can easily switch between different reference databases without the necessity to perform a new database indexation </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Create reference databases for X-ray and neutron diffraction e.g. from cif-files </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Comfortable user database manager for easy maintenance of user data (add/import/edit/delete/sort entries) </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Powerful CIF- and ICSD/Retrieve import, incl. calculation of powder pattern, I/I<sub>c</sub> and density </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Atomic coordinates available e.g. in the ICSD, the ICDD PDF-4+ or free-of-charge reference data are displayed in the data sheets and included in the CIF- or Textfile-exports (e.g. for Rietveld analysis) </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Displaying of Miller indices (hkl) in diffraction patterns and entry data sheets </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Fully integrated handling of your own diffraction data with PDF data (search-match, retrieval, data viewing) </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Automatic residual searching with respect to identified phases </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Automatic raw data processing: α2-stripping, background subtraction, peak search, profile fitting, error correction </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Automatic optimization of peak searching sensitivity </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Fitting of all (or selected) peak parameters to exp. profile data </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Comfortable manual editing of peaks (add/shift/delete/fit) using mouse or keyboard </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Semi-quantitative analysis (Reference Intensity Ratio method) </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Straight-forward usage of additional knowledge (composition, PDF subfiles, crystallographic data, color, density etc.) </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Integrated database retrieval system and viewer for PDF, COD and user databases </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Multiple step undo/redo </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">User-configurable automatic operation </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Automatic d-value shifting during search-match process (optionally) </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Intensity contribution to figure-of-merit can be reduced for preferred-orientation cases </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">Comfortable graphical and tabular comparison of peak data and candidate patterns </span></li> <li style="color: black;"><span style="font-size: 10pt; font-family: times new roman,times; color: #000000;">User-configurable reports (HTML, PDF or text file) </span></li> <li><span style="font-size: 10pt; font-family: 'Verdana','sans-serif'; color: #000000;"><span style="font-family: times new roman,times;">Online update (automatic or manual)</span></span></li> </ul> <p>&nbsp;</p> <hr /> <p><span style="font-size: 10pt; font-family: 'Verdana','sans-serif'; color: #000000;"><span style="font-family: times new roman,times;"></span></span><span style="font-size: 12pt;"><strong><span style="font-family: 'Verdana','sans-serif'; color: #800000;"><span style="font-family: times new roman,times;">支持的衍射数据格式:</span></span></strong></span></p> <ul> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">ASCII profile (start, step, intensities or 2 columns) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Bruker/Siemens raw data (old and new) (*.raw) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Bruker/Siemens DIFFRAC AT peak data (*.dif)&nbsp; </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">DBWS (*.rfl, *.dat) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">ENDEAVOUR peak list (2 columns: 2theta/d intensity; *.dif) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">G670 raw data (*.gdf) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Inel raw data (*.dat) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Ital Structures raw data (*.esg)&nbsp; </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Jade/MDI/SCINTAG raw data (*.mdi)&nbsp; </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">JEOL ASCII Export raw data (*.txt)&nbsp; </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">PANalytical XRDML Scan raw data (*.xrdml) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">PANalytical/Philips peak data (*.udi) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">PANalytical/Philips raw data (*.rd, *.udf) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Rigaku raw data (*.raw) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">SCINTAG raw data (*.raw, *.rd) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Shimadzu raw data (*.raw) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Siemens (*.uxd) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Sietronics XRD scan data (*.cpi) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Stoe raw data (*.raw) </span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">Stoe peak data (*.pks)</span></li> <li><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;"><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;">&nbsp;</span></span><hr style="font-size: 12.8px;" /><span style="font-size: 10pt; color: #000000; font-family: times new roman,times;"></span></li> </ul> <table border="0" cellpadding="0" cellspacing="0" class="templateContainer" style="font-family: 微软雅黑; widows: 1; border-collapse: collapse; border: 0px; width: 100%;"> <tbody> <tr> <td valign="top" id="templateHeader" style="border-top: 5px none #000070; border-bottom-width: 0px;"> <table class="mcnTextBlock" border="0" cellspacing="0" cellpadding="0" style="min-width: 100%; border-collapse: collapse; width: 100%;"> <tbody class="mcnTextBlockOuter"> <tr> <td class="mcnTextBlockInner" valign="top" style="padding-top: 9px;"> <table align="left" class="mcnTextContentContainer" border="0" cellspacing="0" cellpadding="0" style="max-width: 100%; min-width: 100%; border-collapse: collapse; width: 100%;"> <tbody> <tr> <td class="mcnTextContent" valign="top" style="padding-right: 18px; padding-bottom: 9px; padding-left: 18px; color: #202020; font-family: Helvetica; font-size: 16px; line-height: 24px;"> <h1 style="margin-bottom: 0px; font-size: 26px; font-weight: bold; line-height: 32.5px;"><span style="font-size: 12pt;">New tutorial video explains how to set up ICDD PDF reference databases with Match!</span></h1> </td> </tr> </tbody> </table> </td> </tr> </tbody> </table> </td> </tr> <tr> <td valign="top" id="templateBody" style="border-top-width: 0px; border-bottom-width: 0px;"> <table class="mcnTextBlock" border="0" cellspacing="0" cellpadding="0" style="min-width: 100%; border-collapse: collapse; width: 100%;"> <tbody class="mcnTextBlockOuter"> <tr> <td class="mcnTextBlockInner" valign="top" style="padding-top: 9px;"> <table align="left" class="mcnTextContentContainer" border="0" cellspacing="0" cellpadding="0" style="max-width: 100%; min-width: 100%; border-collapse: collapse; width: 100%;"> <tbody> <tr> <td class="mcnTextContent" valign="top" style="padding-right: 18px; padding-bottom: 9px; padding-left: 18px; color: #202020; font-family: Helvetica; font-size: 16px; line-height: 24px;"> <div> <div><span style="font-size: 10pt;">Several customers reported that in their lab an ICDD PDF database product is available but is not used by Match!, basically because they did not know how to do it.</span><br />&nbsp;<span style="font-size: 10pt;">Hence, we have created a new video explaining what reference databases are in general, and how a PDF database can be used with Match! in particular:</span></div> </div> <div>&nbsp;<a href="https://crystalimpact.de/match/video_RefDB_Basics.htm" style="font-size: 10pt;">https://crystalimpact.de/match/video_RefDB_Basics.htm</a></div> </td> </tr> </tbody> </table> </td> </tr> </tbody> </table> </td> </tr> </tbody> </table> <p>&nbsp;</p> <hr style="font-size: 12.8px;" /> <p>&nbsp;</p> <p><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times; font-size: 12pt; color: #800000;"><strong>系统最低需求</strong></span></span></span></p> <ul> <li> <p><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;">Windows</span></span></span></p> <p><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;"><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;"><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;">Windows XP, Vista, Windows 7 or Windows 8<br />内存不小于1 GB<br />空余硬盘空间不小于1.5 GB<br />分辨率不小于1024 x 768<br /></span></span></span></span></span></span></span></span></span></p> </li> </ul> <ul> <li> <p><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;"><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;">Mac OS X</span></span></span></span></span></span></p> <p><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;"><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;">英特尔处理器、Mac OS X 10.5.8 "Leopard" 系统或以上<br />内存不小于1 GB <br />空余硬盘空间不小于1.5 GB <br />分辨率不小于1024 x 768</span></span></span></span></span></span></p> </li> </ul> <ul> <li> <p><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;">Linux</span></span></span></p> <p><span style="font-size: 10pt; color: #000000;"><span style="font-family: 'Verdana','sans-serif';"><span style="font-family: times new roman,times;">32位系统:OpenSUSE, Ubuntu, Fedora <br />内存不小于1 GB <br />空余硬盘空间不小于1.5 GB <br />分辨率不小于1024 x 768</span></span></span></p> </li> </ul> <p>&nbsp;</p>